名前空間
変種
操作

std::laguerre, std::laguerref, std::laguerrel

提供: cppreference.com
 
 
数値演算ライブラリ
一般的な数学関数
特殊な数学関数 (C++17)
数学定数 (C++20)
浮動小数点環境 (C++11)
複素数
数値配列
擬似乱数生成
コンパイル時有理数算術 (C++11)
数値演算アルゴリズム
(C++17)
(C++17)
補間
(C++20)
(C++20)
汎用の数値演算
(C++11)
(C++17)
ビット操作
(C++20)
(C++20)
(C++20)
(C++20)
(C++20)
(C++20)
(C++20)
(C++20)
(C++20)
(C++20)
(C++20)
 
 
double      laguerre( unsigned int n, double x );

float       laguerre( unsigned int n, float x );
long double laguerre( unsigned int n, long double x );
float       laguerref( unsigned int n, float x );

long double laguerrel( unsigned int n, long double x );
(1) (C++17以上)
double      laguerre( unsigned int n, 整数型 x );
(2) (C++17以上)
1) 次数 n および引数 xラゲール多項式を計算します。
2) 任意の整数型の引数を取るオーバーロード集合または関数テンプレート。 引数を double にキャストした後は (1) と同等です。

目次

[編集] 引数

n - 多項式の次数、符号なし整数型の値
x - 引数、浮動小数点型または整数型の値

[編集] 戻り値

エラーが発生しなければ、 x のラゲール多項式、すなわち
ex
n!
dn
dxn
(xn
e-x)
の値が返されます。

[編集] エラー処理

エラーは math_errhandling で規定されている通りに報告されます。

  • 引数が NaN の場合は、 NaN が返されます。 定義域エラーは報告されません。
  • x が負の場合は、定義域エラーが発生するかもしれません。
  • n が128以上の場合、動作は処理系定義です。

[編集] ノート

C++17 をサポートしないけれども ISO 29124:2010 をサポートする処理系は、 __STDCPP_MATH_SPEC_FUNCS__ が処理系によって少なくとも 201003L の値に定義されており、ユーザがいかなる標準ライブラリのヘッダもインクルードする前に __STDCPP_WANT_MATH_SPEC_FUNCS__ を定義する場合、この関数を提供します。

ISO 29124:2010 をサポートしなけれども TR 19768:2007 (TR1) をサポートする処理系は、ヘッダ <tr1/cmath> および名前空間 std::tr1 で、この関数を提供します。

この関数の実装は boost.math でも利用可能です。

ラゲール多項式は方程式 xy,,
+(1-x)y,
+ny = 0
の多項式解です。

最初のいくつかは以下の通りです。

  • laguerre(0, x) = 1
  • laguerre(1, x) = -x + 1
  • laguerre(2, x) =
    1
    2
    [x2
    -4x+2]
  • laguerre(3, x) =
    1
    6
    [-x3
    -9x2
    -18x+6]

[編集]

#define __STDCPP_WANT_MATH_SPEC_FUNCS__ 1
#include <cmath>
#include <iostream>
double L1(double x) { return -x + 1; }
double L2(double x) { return 0.5*(x*x-4*x+2); }
int main()
{
    // spot-checks
    std::cout << std::laguerre(1, 0.5) << '=' << L1(0.5) << '\n'
              << std::laguerre(2, 0.5) << '=' << L2(0.5) << '\n';
}

出力:

0.5=0.5
0.125=0.125

[編集] 関連項目

ラゲール陪多項式
(関数) [edit]

[編集] 外部リンク

Weisstein, Eric W. "Laguerre Polynomial." From MathWorld--A Wolfram Web Resource.